Package: lglasso 0.1.0

lglasso: Longitudinal Graphical Lasso

For high-dimensional correlated observations, this package carries out the L_1 penalized maximum likelihood estimation of the precision matrix (network) and the correlation parameters. The correlated data can be longitudinal data (may be irregularly spaced) with dampening correlation or clustered data with uniform correlation. For the details of the algorithms, please see the paper Jie Zhou et al. Identifying Microbial Interaction Networks Based on Irregularly Spaced Longitudinal 16S rRNA sequence data <doi:10.1101/2021.11.26.470159>.

Authors:Jie Zhou [aut, cre, cph], Jiang Gui [aut], Weston Viles [aut], Anne Hoen [aut]

lglasso_0.1.0.tar.gz
lglasso_0.1.0.zip(r-4.5)lglasso_0.1.0.zip(r-4.4)lglasso_0.1.0.zip(r-4.3)
lglasso_0.1.0.tgz(r-4.4-any)lglasso_0.1.0.tgz(r-4.3-any)
lglasso_0.1.0.tar.gz(r-4.5-noble)lglasso_0.1.0.tar.gz(r-4.4-noble)
lglasso_0.1.0.tgz(r-4.4-emscripten)lglasso_0.1.0.tgz(r-4.3-emscripten)
lglasso.pdf |lglasso.html
lglasso/json (API)

# Install 'lglasso' in R:
install.packages('lglasso', repos = c('https://jiezhou-2.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/jiezhou-2/lglasso/issues

On CRAN:

3.18 score 1 stars 5 scripts 160 downloads 2 exports 1 dependencies

Last updated 9 months agofrom:321ca35d14. Checks:OK: 1 WARNING: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 19 2024
R-4.5-winWARNINGNov 19 2024
R-4.5-linuxWARNINGNov 19 2024
R-4.4-winWARNINGNov 19 2024
R-4.4-macWARNINGNov 19 2024
R-4.3-winWARNINGNov 19 2024
R-4.3-macWARNINGNov 19 2024

Exports:lglassomle

Dependencies:glasso